

Marine Fenders

From its base in the United States, TekMarine Systems LLC designs and supplies advanced marine fendering and mooring systems to ports, harbors and waterways across the world.

We bring a wealth of engineering and market experience to each project. Our fender solutions range from simple modules to the most sophisticated engineered systems. We supply every type of berth, including passenger terminals, bulk and RoRo ports, Oil and Gas installations and naval facilities.

We offer full support at each step from early concept discussions through to design and detailing, material selection, construction, testing, shipping, and installation. A full after-care service helps keep your investment working safely and reliably for many years after commission.

Disclaimer

TekMarine Systems LLC ("TekMarine") has made every effort to ensure that the product descriptions and technical specifications in this catalog are correct. TekMarine can not accept liability or responsibility for errors and omissions for any reason. Customers and catalog users are kindly requested to ask TekMarine for a detailed specification and approved drawings before manufacturing and construction. TekMarine reserves the right to make changes to specifications and drawings without prior notice. All dimensions, performance values, material properties and other product specifications are subject to standard tolerances. This catalog and the information herein replaces all earlier editions. If in any doubt, please contact TekMarine.

Copyright

Copyright © 2015 TekMarine Systems LLC. All rights reserved.

This catalog may not be reproduced, copied or distributed to third parties without the consent of TekMarine Systems LLC in every case.

TJTB Tug Cylindrical Fenders

Modern tugs frequently use large cylindrical fenders as their main pushing fenders to bow and stern. The rounded section maintains a constant contact against flared vessel hulls, and work just as well with straight-sided vessels.

The fender is attached by a chain running along the fender's central bore, and straps or chains in special grooves around the fender circumference. Fender ends may be tapered.

TJTB Tug Cylindrical Fenders are available in diameters up to 1000mm(3'3'') and continuous or jointed lengths.

Dimensions

	4	E	3	Ø	C	Ø	D	Ø	E	l I	F	Wei	ight
mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	kg	lb
570	22.4	500	19.7	250	9.8	190	7.5	75	3.0	125	4.9	46	101
600	23.6	700	27.6	300	11.8	225	8.9	75	3.0	150	5.9	65	143
650	25.6	800	31.5	380	15.0	280	11.0	100	3.9	190	7.5	105	231
670	26.4	800	31.5	400	15.7	300	11.8	100	3.9	200	7.9	116	256
700	27.6	850	33.5	450	17.7	350	13.8	100	3.9	225	8.9	147	324
730	28.7	900	35.4	500	19.7	375	14.8	100	3.9	250	9.8	181	399
800	31.5	900	35.4	600	23.6	450	17.7	125	4.9	300	11.8	255	562
930	36.6	1000	39.4	800	31.5	600	23.6	125	4.9	400	15.7	453	999
1000	39.4	1100	43.3	900	35.4	675	26.6	150	5.9	450	17.7	573	1263
1060	41.7	1200	47.2	1000	39.4	750	29.5	150	5.9	500	19.7	707	1559

Values are for single units, L=1m.

Attachment

A chain is run through the longitudinal bore of the cylindrical fender, attached to the hull at either end and tensioned using turnbuckles. Larger fenders are secured via chains or straps running around the grooves in the fender surface.

The large, flexible faces of M-Fenders exert low hull pressures when pushing vessels. They are grooved for a soft and flexible contact face, which firmly grips the vessel's hull. The M-Fender attaches securely to the tug via fixing pins running through each of its three legs.

M-Fenders have a low weight per contact area. They can be fitted around very tight curves, fixed with pins that run through central bore holes. An intermediate support is recommended where length is over 1000mm (3' 3'').

Dimensions and Fixings

Fixing pin -

Extra support (L>1000mm)

J	4	E	3	(2	L	ıax	Wei	ight
mm	in	mm	in	mm	in	mm	in	kg	lb
400	15.7	200	7.9	150	5.9	2000	78.7	56	123
500	19.7	250	9.8	190	7.5	2000	78.7	89	196
600	23.6	300	11.8	230	9.1	2000	78.7	132	291
800	31.5	400	15.7	305	12.0	2100	82.7	235	518

Performance

Pin	dia.	Flat	bar	R	nin
mm	in	mm	in	mm	in
20	0.8	100×15	1.0 × 0.2	450	17.7
24	0.9	125×20	1.3×0.2	550	21.7
30	1.2	150×20	1.5 × 0.2	650	25.6
40	1.6	150×20	1.5 × 0.2	900	35.4

The Block Fender's instantly recognizable 'keyhole' section handles the most demanding tug operations. Block Fenders have optional smooth or grooved faces to suit different friction requirements, and can be fitted with low-friction UHMW-PE facings for heavy seas.

As well as tugs, Block Fenders are commonly fitted to pilings and similar structures to form a simple, reliable protective face.

An intermediate support is recommended for fenders over 1000mm (3' 3'') long.

Dimensions and Fixings

Performance

1	4	E	3	(2	L	nax	We	ight
mm	in	mm	in	mm	in	mm	in	kg	lb
200	7.9	200	7.9	35	1.4	2000	78.7	33	73
250	9.8	250	9.8	50	2.0	2000	78.7	54	119
300	11.8	300	11.8	60	2.4	1750	68.9	80	176
350	13.8	350	13.8	70	2.8	2000	78.7	114	251

Pin	dia.	Flat	bar	R	nin
mm	in	mm	in	mm	in
20	0.8	100×15	3.9 × 0.2	450	17.7
24	0.9	125 × 20	4.9 × 0.2	600	23.6
30	1.2	150×20	5.9 × 0.2	800	31.5
40	1.6	175 × 25	6.9 × 0.2	1000	39.4

One of the world's most popular tug fender designs, the W-Fender is built for extreme conditions. Its open-bore profile makes installation simple around almost any hull shape.

W-Fenders are fitted using pins that run through central bore holes. An intermediate support is recommended for fenders over 1000mm (3' 3'') long.

Dimensions and Fixings

Performance

4	4	E	3	(2)	L	ıax	Wei	ight
mm	in	mm	in	mm	in	mm	in	mm	in	kg	lb
320	12.6	200	7.9	280	11.0	100	3.9	2000	78.7	51	112
400	15.7	250	9.8	350	13.8	110	4.3	2000	78.7	81	179
480	17.7	300	11.8	426	16.8	135	5.3	2000	78.7	120	265
500	19.7	450	17.7	420	16.5	90	3.5	2000	78.7	180	397

Pin	dia.	Flat	bar	R	nin
mm	in	mm	in	mm	in
25	1.0	100×20	3.9 x 0.2	600	23.6
30	1.2	120×20	4.7 x 0.2	800	31.5
40	1.6	140×20	5.5 x 0.2	900	35.4
40	1.6	150×20	5.9 x 0.2	1000	39.4

Profile Fenders are used for smaller vessels and lighter applications. They are usually bolted to the structure, either through the top or sides of the fender. Available in various sections including D and square, they can be supplied in almost any length then cut and drilled as needed.

TJDD **D** TJSD **D**

										Ma	aht					Perfor	mance			
	4	E	3	٨	٨	1	N	Delt		we	ignt			TJDI	D 🗅			TJSI	D 🗖	
								воп	TJDI	D O	TJSI	D 🗖	Ene	rgy	Rea	tion	Ene	ergy	Read	ction
mm	in	mm	in	mm	in	mm	in		kg	lb	kg	lb	kNm	ft.kip	kN	kip	kNm	ft.kip	kN	kip
100	3.9	50	2.0	90-130	3.7-5.3	200-300	8.2-12.2	M12	8.0	17.6	9.3	20.5	1.4	1.0	76	17.0	2.6	1.9	137	30.8
150	5.9	75	3.0	110-150	4.5-6.1	250-350	10.2-14.3	M16	18.1	39.9	21.0	46.3	3.1	2.3	114	25.6	6.5	4.8	205	46.1
200	7.9	100	3.9	130-180	5.3-7.3	300-400	12.2-16.3	M20	32.1	70.8	37.3	82.2	5.6	4.1	152	34.2	11.3	8.3	273	61.4
250	9.8	125	4.9	140-200	5.7-8.2	350-450	14.3-18.4	M24	50.2	111	58.3	129	8.9	6.6	190	42.7	17.6	13.0	345	77.6
300	11.8	150	5.9	140-200	5.7-8.2	350-450	14.3-18.4	M24	72.3	159	83.9	185	12.8	9.4	232	52.2	25.3	18.7	413	92.8
350	13.8	175	6.9	140-200	5.7-8.2	350-450	14.3-18.4	M30	98.4	217	114	251	17.6	13.0	270	60.7	34.3	25.3	504	113
400	15.7	200	7.9	140-200	5.7-8.2	350-450	14.3-18.4	M30	129	284	149	328	23.2	17.1	305	68.6	45.1	33.3	590	133
500	19.7	250	9.8	140-200	5.7-8.2	350-450	14.3-18.4	M36	201	443	233	514	36.0	26.6	384	86.3	70.3	51.9	737	166

Values are for single units, L=1m.

TJDO 🗅

TJSO 🗖

														Ma	aht				F	Perfor	mance	2		
1	4	Ø	В	0	G	5	5	М		1	N I	Delt		wei	gnt			TJD	ם כ			TJSC		
												воп	TJD	Δ 0	TJS	D 🖸	Ene	rgy	Read	tion	Ene	rgy	Read	tion
mm	in	mm	in	mm	in	mm	in	mm	in	mm	in		kg	lb	kg	lb	kNm	ft.kip	kN	kip	kNm	ft.kip	kN	kip
100	3.9	50	2.0	10	0.4	25	1.0	90-130	3.7-5.3	200-300	8.2-12.2	M12	9.9	21.8	11.1	24.5	1.9	1.4	154	34.7	2.8	2.1	173	38.9
150	5.9	75	3.0	12	0.5	30	1.2	110-150	4.5-6.1	250-350	10.2-14.3	M16	20.0	44.1	22.9	50.5	4.2	3.1	233	52.4	6.4	4.7	260	58.5
200	7.9	100	3.9	15	0.6	45	1.8	130-180	5.3-7.3	300-400	12.2-16.3	M20	37.4	82.5	42.6	93.9	7.5	5.5	315	70.8	11.2	8.3	343	77.1
250	9.8	125	4.9	20	0.8	50	2.0	140-200	5.7-8.2	350-450	14.3-18.4	M24	57.2	126	65.3	144	11.8	8.7	390	87.7	17.6	13.0	435	97.8
300	11.8	150	5.9	25	1.0	60	2.4	140-200	5.7-8.2	350-450	14.3-18.4	M24	81.3	179	92.9	205	16.9	12.5	474	107	25.3	18.7	520	117
350	13.8	175	6.9	25	1.0	70	2.8	140-200	5.7-8.2	350-450	14.3-18.4	M30	110	241	118	259	23.0	17.0	545	123	34.2	25.2	605	136
400	15.7	200	7.9	30	1.2	80	3.1	140-200	5.7-8.2	350-450	14.3-18.4	M30	142	313	154	339	29.3	21.6	625	141	45.0	33.2	688	155
500	19.7	250	9.8	40	1.6	90	3.5	140-200	5.7-8.2	350-450	14.3-18.4	M36	208	459	240	529	46.5	34.3	790	178	70.2	51.8	865	194

Composite Fenders

Composite Fenders combine a rubber body permanently bonded to a low-friction UHMW-PE face pad. The rubber body absorbs berthing energy while the facing reduces shear forces.

	٨) *		-		-						M	Stand	lard	Elat	har			Wei	ight	
	A	Ø	.		9		5			IVI		•	N	leng	jth	Fidt	Dar	Bolt	Hollo	w 🗖	Soli	d 🔳
mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in		kg	lb	kg	lb
100	3.9	30	1.2	10	0.4	25	1.0	20	0.8	90-130	3.5-5.1	200-300	7.9-11.8	3000	118	50 × 6	2.0 × 0.2	M12	10.3	22.7	11.1	24.5
150	5.9	65	2.6	12	0.5	30	1.2	20	0.8	110-150	4.3-5.9	250-350	9.8-13.8	3000	118	60 × 8	2.4 × 0.3	M16	21.5	47.4	27.0	59.5
200	7.9	75	3.0	20	0.8	45	1.8	25	1.0	130-180	5.1-7.1	300-400	11.8-15.7	3000	118	80×10	3.1×0.4	M20	40.2	88.6	48.0	106
250	9.8	100	3.9	25	1.0	50	2.0	30	1.2	140-200	5.5-7.9	350-450	13.8-17.7	2000	79	100 × 6	3.9 × 0.2	M24	60.2	133	75.0	165
300	11.8	125	4.9	30	1.2	60	2.4	30	1.2	140-200	5.5-7.9	350-450	13.8-17.7	3700	146	110 × 12	4.3 × 0.5	M24	92.1	203	108	238

Values are for single units, L=1m. *Dimension applies to hollow fenders only.

	, I	a	•				-		-		-				a	Stand	lard	EI.	+ hay			We	ight	
	`	<i>v</i>	5				3		5			, N	•			leng	yth	FIG	it Dai	Bolt	Hollo	w 🖸	Soli	d 📕
mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in		kg	lb	kg	lb
80	3.1	42	1.7	60	2.4	6	0.2	25	1.0	10	0.4	90-130	3.5-5.1	200-300	7.9–11.8	2000	79	45 × 6	1.8 × 0.2	M12	5.4	11.9	7.0	15.4
100	3.9	45	1.8	74	2.9	8	0.3	25	1.0	10	0.4	90-130	3.5-5.1	200-300	7.9–11.8	2000	79	45 × 6	1.8 × 0.2	M12	8.4	18.5	11.0	24.3
120	4.7	65	2.6	88	3.5	10	0.4	30	1.2	12	0.5	110-150	4.3-5.9	250-350	9.8-13.8	2000	79	60 × 8	2.4 × 0.3	M16	12.2	26.9	15.8	34.8
150	5.9	73	2.9	110	4.3	12	0.5	30	1.2	15	0.6	110-150	4.3-5.9	250-350	9.8-13.8	3000	118	60 × 8	2.4 × 0.3	M16	19.7	43.4	24.8	54.7

Values are for single units, L=1m. *Dimension applies to hollow fenders only.

HD-PE Sliding Fenders

TekMarine HD-PE Fenders are durable, low friction strips that wear better and last longer than traditional timbers. HD-PE does not rot, split or suffer from marine borer infestation.

HD-PE Fenders are ideal for workboat berths, waterways and lock entrances and as components in larger fender installations.

HD-PE is easy to machine and install onto concrete, steel or timber substrates. Better still, HD-PE is fully recyclable after its working life, and is a cost-effective alternative to tropical hardwoods.

Fixing

HD-PE Fenders are equally at home mounted on concrete, steel plate or beam structures, or as a timber facing. Please ask TekMarine about the most suitable drilling diameters and fixings for your project.

Physical Properties

Property	Test method	Typical results	Unit
Abrasion index (sand slurry)	ISO DIS 15527	~400	-
Density	ISO 1183-1	0.91-0.94	g/cm³
Dynamic friction (wet plastic)	ISO 8295	0.20-0.25	-
Molecular weight	Light diffusion method ASTM D6474	~200,000 >4 × 10 ⁻⁶	g/mol
Operating temperature	Not applicable	-20 to +70	°C
Shore hardness	DIN 53505/ISO 868	48-50	Shore D
Thermal expansion	DIN 53752/ISO 3146	2 × 10 ⁻⁴	K⁻¹
Yield strength	DIN 53504/ISO 527	10-15	MPa

Typical results are for virgin HD–PE. Actual values for Sliding Fenders can differ due to the proportion of recycled materials used in their manufacture.

For a comparison of the friction properties of various materials, please refer to p51.

HD-PE Dimensions

	A B		3	ØD		Ø D ØE		L		м		N		Р		s		т		Flat Bar			Wei	Weight	
mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	Bolt	kg	lb	
50	2.0	50	2.0	32	1.3	16	0.6	5500	217	75-125	3-5	250-300	10-12	0	0	25	1.0	-	-	-	-	M12	2.3	5.1	
60	2.4	60	2.4	32	1.3	16	0.6	5500	217	75-125	3-5	250-300	10-12	0	0	30	1.2	-	-	-	-	M12	3.3	7.3	
70	2.8	50	2.0	32	1.3	16	0.6	2500	98	75-125	3-5	250-300	10-12	0	0	25	1.0	-	-	-	-	M12	3.3	7.3	
70	2.8	70	2.8	32	1.3	16	0.6	6500	256	75-125	3-5	250-300	10-12	0	0	35	1.4	-	-	-	-	M12	4.5	9.9	
80	3.1	60	2.4	32	1.3	16	0.6	5000	197	75-125	3-5	250-300	10-12	0	0	30	1.2	-	-	-	-	M12	4.5	9.9	
100	3.9	50	2.0	32	1.3	16	0.6	5500	217	75-125	3-5	250-300	10-12	0	0	25	1.0	-	-	-	-	M12	4.7	10.4	
100	3.9	65	2.6	32	1.3	16	0.6	5500	217	75-125	3-5	250-300	10-12	0	0	30	1.2	-	-	-	-	M12	6.1	13.4	
100	3.9	100	3.9	32	1.3	16	0.6	6000	236	75-125	3-5	250-300	10-12	0	0	50	2.0	32	1.3	50×6	2×0.25	M12	9.3	20.5	
120	4.7	80	3.1	40	1.6	20	0.8	5000	197	100-150	4-6	300-350	12-14	0	0	40	1.6	-	-	-	-	M16	8.9	19.6	
120	4.7	120	4.7	40	1.6	20	0.8	6000	236	100-150	4-6	300-350	12-14	0	0	60	2.4	40	1.6	65×10	2.5 × 0.4	M16	13.4	29.5	
140	5.5	70	2.8	40	1.6	20	0.8	5500	217	100-150	4-6	300-350	12-14	0-50	0-2.0	35	1.4	-	-	-	-	M16	9.1	20.1	
160	6.3	70	2.8	40	1.6	20	0.8	5000	197	100-150	4-6	300-350	12-14	0-70	0-2.8	35	1.4	-	-	-	-	M16	10.4	22.9	
160	6.3	160	6.3	40	1.6	20	0.8	6000	236	100-150	4-6	300-350	12-14	0-80	0-3.1	80	3.1	40	1.6	80×10	3.1×0.4	M16	24.1	53.1	
170	6.7	120	4.7	40	1.6	20	0.8	5500	217	100-150	4-6	300-350	12-14	0-80	0-3.1	60	2.4	40	1.6	65×10	2.5 × 0.4	M16	19.0	41.9	
175	6.9	150	5.9	50	2.0	23	0.9	4000	157	125-175	5-7	350-450	14-18	0-80	0-3.1	75	3.0	40	1.6	80×10	3.1×0.4	M20	24.2	53.4	
180	7.1	70	2.8	50	2.0	23	0.9	5000	197	125-175	5-7	350-450	14-18	0-80	0-3.1	35	1.4	-	-	-	-	M20	11.7	25.8	
180	7.1	180	7.1	50	2.0	23	0.9	6000	236	125-175	5-7	350-450	14-18	0-80	0-3.1	90	3.5	46	1.8	80×10	3.1×0.4	M20	30.2	66.6	
190	7.5	110	4.3	50	2.0	23	0.9	5000	197	125-175	5-7	350-450	14-18	0-90	0-3.5	55	2.2	46	1.8	80×10	3.1×0.4	M20	19.4	42.8	
200	7.9	75	3.0	50	2.0	23	0.9	5000	197	125-175	5-7	350-450	14-18	0-100	0-3.9	35	1.4	46	1.8	-	-	M20	14.0	30.9	
200	7.9	100	3.9	50	2.0	23	0.9	6000	236	125-175	5-7	350-450	14-18	0-100	0-3.9	50	2.0	46	1.8	80×10	3.1×0.4	M20	18.6	41.0	
200	7.9	150	5.9	50	2.0	23	0.9	5500	217	125-175	5-7	350-450	14-18	0-100	0-3.9	75	3.0	46	1.8	80×10	3.1×0.4	M20	27.9	61.5	
200	7.9	200	7.9	50	2.0	23	0.9	6000	236	125-175	5-7	350-450	14-18	0-100	0-3.9	100	3.9	46	1.8	80×10	3.1×0.4	M20	37.6	82.9	
210	8.3	165	6.5	50	2.0	23	0.9	2000	79	150-200	6-8	450-550	18-22	0-130	0-5.1	80	3.1	46	1.8	80×10	3.1×0.4	M20	31.9	70.3	
250	9.8	150	5.9	65	2.6	28	1.1	6500	256	150-200	6-8	450-550	18-22	0-130	0-5.1	75	3.0	46	1.8	80×10	3.1×0.4	M24	34.8	76.7	
250	9.8	160	6.3	65	2.6	28	1.1	5000	197	150-200	6-8	450-550	18-22	0-130	0-5.1	80	3.1	46	1.8	80×10	3.1×0.4	M24	37.2	82.0	
250	9.8	250	9.8	65	2.6	28	1.1	5000	197	150-200	6-8	450-550	18-22	0-130	0-5.1	125	4.9	56	2.2	100×10	3.9 × 0.4	M24	58.1	128	
300	11.8	100	3.9	65	2.6	28	1.1	5500	217	150-200	6-8	450-550	18-22	0-160	0-6.3	50	2.0	-	-	-	-	M24	27.9	61.5	
300	11.8	210	8.3	70	2.8	36	1.4	5000	197	175-225	7-9	500-600	20-24	0-160	0-6.3	105	4.1	56	2.2	100×12	3.9 × 0.5	M30	58.6	129	
300	11.8	300	11.8	70	2.8	36	1.4	5000	197	175-225	7-9	500-600	20-24	0-160	0-6.3	105	4.1	72	2.8	100×12	3.9 × 0.5	M30	84.6	187	
440	17.3	160	6.3	70	2.8	36	1.4	2000	79	175-225	7-9	500-600	20-24	0-160	0-6.3	80	3.1	-	-	-	-	M30	66.8	147	

Every TekMarine rubber fender unit uses the highest quality Natural Rubber (NR) and/or Styrene-butadiene (SBR) based compounds. These meet or exceed the performance requirements of the main international fender specifications such as PIANC and EAU-E 62 "Acceptance Requirements for Fender Elastomers". The table below shows typical specifications for laboratory prepared and tested specimens.

Please consult TekMarine about other fender compounds such as EPDM, Butyl, Neoprene and Polyurethane.

Material samples for laboratory test purposes are prepared differently to rubber fender units. Please ask TekMarine for details.

Property	Test method	Conditions	Requirements	Unit	
	ASTM D412 Die C; AS	Original	≥ 16.0	MPa	
Iensile Strength	1180.2; BS 903.A2; ISO 37; JIS K6251 Item 3, Dumbell 3	Aged for 96 hours at 70°C	≥12.8		
	ASTM D 412 Die C; AS	Original	≥400	01	
Elongation at Break	1180.2; BS 903.A2; ISO 37; JIS K 6251 Item 3, Dumbell 3	Aged for 96 hours at 70°C	≥ 320	%	
lle de ce	ASTM D 2240; AS1683.15.2;	Original	≤ 78°	Charret	
Hardness	JIS K 6301 Item 5A Tester	Aged for 96 hours at 70°C	original value +6°	Snore A	
Community Cot	ASTM D 395; AS1683.13B; BS903. A6; ISO 815; JIS K6262 Item 10	Aged for 22 hours at 70°C	≤ 30	0/6	
Compression Set	DIN 53517	Aged for 24 hours at 70°C	≤ 40	70	
Tear Resistance	ASTM D624; AS1683.12; BS903. A3: ISO 34.1; JIS K6301 Item 9; Test Piece A	Die B	≥ 70	kN/m	
Ozone Resistance	ASTM D1149; AS1683.24; BS903.43; DIN 53509; ISO 143/1	1ppm at 20% strain at 40°C for 100 hours	no visible cracking	n/a	
Seawater Resistance (Hardness)		28 days in artificial seawater at 95°C	≤ ±10°	Shore A	
Seawater Resistance (Volume)	ASIMD 471; BSISO 1817	±2°C	≤ +10/-5	%	
Abrasion Resistance	BS 903.A9	Method B	≤ 0.5	сс	
Bond Strength (Steel to Rubber)	BS 903.A21	Method B	≥7	N/mm	

Tolerances

Standard manufacturing and performance tolerances apply to all TekMarine fenders. TekMarine may agree to smaller tolerances in special cases. Please ask TekMarine for tolerances of types not listed below.

Fender Type	Pro	operty	Tolerance				
	All dimensions		±3% or ±2mm (whichever greater)				
TJCO, TJSC, TJOE, TJDA-A and TJDA-B	Bolt hole spacing		±2mm				
	Outside diameter		±4%				
ТЈСҮ	Inside diameter		±4%				
	Length		±40mm				
	Cross-section		±4%				
	Length		±2% or ±10mm(whichever greater)				
1,00, 1,30, 1,00 and 1,50	Drilled hole centers		±4mm (non-cumulative)				
	Counterbore depth		±4mm (under-head depth)				
	Cross-section		±3% or ±2mm (whichever greater)				
	Length		±2% or ±25mm (whichever greater)				
	Drilled hole centers		±4mm (non-cumulative)				
	Counterbore depth		±4mm (under-head depth)				
	Cross-section		±4%				
HD DE fondore	Length		±2% or ±20mm (whichever greater)				
nd-PE lenders	Drilled hole centers		±4mm (non-cumulative)				
	Counterbore depth		±4mm (under-head depth)				
	Length and width	(cut panels)	±5mm (cut pads)				
		(uncut sheets)	±20mm (uncut sheets)				
	Planed thickness	≤ 30mm	±0.2mm				
		31-100mm	±0.3mm				
LIHMW DE papals		≥ 100mm	±0.5mm				
Onition PE pariers	Unplaned thickness	≤ 30mm	±2.5mm				
		31-100mm	±4.0mm				
		≥ 100mm	±6.0mm				
	Drilled hole centers		±2mm (non-cumulative)				
	Counterbore depth		±2mm (under-head depth)				
	Cross-section		±3% or ±2mm (whichever greater)				
M. W. and Diack fonders	Length		±3% or ±20mm (whichever greater)				
N, W and Block renders	Fixing hole centers		±3mm				
	Fixing hole diameter		±3mm				

Performance

Fender Type	Property	Tolerance			
TJCO, TJSC, TJUE, TJDA-A and TJDA-B	Reaction, energy and deflection	±10%			
Cylindricals (wrapped)	Reaction, energy and deflection	±10%			
Cylindricals (extruded)	Reaction, energy and deflection	±10%			
Profile fenders	Reaction, energy and deflection	±10%			
Pneumatic fenders	Reaction and energy	±10%			
Foam fenders	Reaction and energy	±15%			

Unless otherwise listed or agreed with TekMarine, tolerances are $\pm 20\%$.

Testing of molded¹ and wrapped cylindrical² fenders is conducted in-house, with an option for third party witnessing, using full size fenders in accordance with the PIANC 2002³ guidelines below.

- All fender units have a unique serial number which can be traced back to manufacturing and testing records.
- Fenders are tested under direct (vertical) compression using the Constant Velocity (CV) method.
- The test specimen shall be broken-in by deflected three or more times to at least its rated deflection. After break-in cycles the fender specimen is allowed to recover for at least one hour.
- Axial compression test speed is 2 cm/min ± 8cm/min.
- The test specimen is temperature stabilized to 23°C ± 5°C.⁴
- Reaction force⁵ is recorded at intervals to at least a deflection at which the permitted⁶ minimum energy absorption is achieved.
- Energy absorption⁵ is determined as the integral of reaction and deflection, calculated using Simpson's Rule. The results of a pre-compression cycle⁶ and subsequence break-in compression cycle(s) are not recorded.
- The fender performance shall be determined from a single measured compression cycle and pass if the reaction force is less than the maximum permitted⁷ reaction force and more than the minimum permitted⁷ energy absorption.⁸
- Sampling is 10% of fenders (rounded up to a unit).⁹
- If any sample does not satisfy the specifications, sampling of the remainder is increased to 20% of fenders (rounded up to a unit), excluding non-compliant units.
- If any further sample does not satisfy the specifications, 100% of remaining samples will be tested. Only units which satisfy the specifications shall be passed for shipment. The non-compliant fenders will be rejected.
 - 1 Molded fenders include TJCO, TJSC, TJUE, TJDA-A and TJDA-B fenders. TJCO, TJSC, TJDA-A and TJDA-B fenders are tested singly. TJUE fenders are tested in pairs.
 - 2 Excluding TJTB tug cylindrical fenders.
 - 3 Permanent International Association of Navigation Congress Report of the International Commission for Improving the Design of Fender Systems (Guidelines for the design of Fender systems: 2002, Appendix A).
 - 4 Where the ambient temperature is outside this range, fenders shall be normalized to this temperature range in a conditioning room for a suitable period (according to fender size), or performance values may be adjusted according to the temperature correction factor tables.
 - 5 Reaction forces (and the corresponding, calculated energy absorption) shall be the exact recorded value and not corrected or otherwise adjusted for speed, unless the project specifications require otherwise.
 - 6 Pre-compression testing involves a single 'run in' cycle up to the catalogue rated deflection. The reaction force is not recorded.
 - 7 Maximum permitted reaction force is the catalogue value plus the applicable manufacturing tolerance. Minimum permitted energy absorption is the catalogue value minus the applicable manufacturing tolerance.
 - 8 The deflection at which the minimum permitted energy absorption is achieved may differ from the nominal 'rated' deflection indicated in the catalogue for the corresponding fender type. Actual deflection is not considered as a pass/fail criterion.
 - 9 Testing to PIANC protocols is included within the fender price. Higher testing frequencies, third party witnessing and temperature stabilization costs shall be paid by the purchaser.

TEKMARINE

TEKMARINE SYSTEMS LLC 9595 Six Pines Drive, Suite 8210 The Woodlands Houston, TX 77380, USA

phone +1832631-6104 sales@tekmarine.com email web www.tekmarine.com

Catalogue version 001d